Theorem 3 (Poole 3.7): Let A be a $n \times n$ matrix that is invertible. Then for any **b** in \mathbb{R}^n , the vector $A^{-1}\mathbf{b}$ is the *unique* solution to the linear system $A\mathbf{x} = \mathbf{b}$.

Proof: There are two things to show.

1. Show that $\mathbf{x} = A^{-1}\mathbf{b}$ is a solution to $A\mathbf{x} = \mathbf{b}$.

2. Show that $\mathbf{x} = A^{-1}\mathbf{b}$ is the only solution to $A\mathbf{x} = \mathbf{b}$.

Example 3: Find all solutions to the linear system

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
(4)

Hint: We showed in example 1 that $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ is invertible with inverse $A^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$.